Configuration
The Illumina NovaSeq 6000 Integration Package v3.6.0 supports the integration of Clarity LIMS to NovaSeq 6000 instruments. This documentation describes the integration and includes the following information:
Preconfigured workflows, protocols, steps, and automations
Installed components
Configuration requirements, rules, and constraints
For instructions on user interaction for each step, validating and troubleshooting the NovaSeq 6000 Integration, refer to NovaSeq 6000 Integration v3.6.0 User Interaction, Validation and Troubleshooting.
The configuration provided in this integration has been established to support NovaSeq 6000 lab processes. Any configuration changes to protocols or workflows - including renaming protocols, steps, and fields - could break process.
Prerequisites and Assumptions
It is assumed that samples enter the NovaSeq 6000 v3.8 workflow as normalized libraries. It is assumed that the following steps have completed before samples are assigned to the workflow:
Samples have been accessioned into the Clarity LIMS.
Samples have been run through QC and library prep.
Samples have been normalized, and the value is captured in a field called Normalized Molarity (nM).
For more information on sample accessioning, refer to Sample Accessioning and Upload and Modify Samples in the Getting Started section of the Clarity LIMS (Clarity & LabLink Reference Guide) documentation.
You can assign samples to workflows automatically, using a routing script, or manually—from the Projects & Samples dashboard. Refer to Assign and Process Samples in the Clarity LIMS (Clarity & LabLink Reference Guide) documentation.
Workflows, Protocols, and Steps
The Illumina NovaSeq 6000 Integration Package v3.6.0 includes the following workflows:
Library Prep Validation v2.3.1 (optional, but recommended for validation purposes)
NovaSeq 6000 v3.8
Library Prep Validation v2.3.1 Workflow
NovaSeq 6000 v3.8 Workflow
Protocol 1: Run Format (NovaSeq 6000 v3.8)
This protocol sets the Loading Workflow Type and allows the choice of the appropriate Flowcell Type and Final Loading Concentration (pM). After the protocol, a routing script sends the normalized libraries to either the NovaSeq Standard (NovaSeq 6000 v3.8) or the NovaSeq Xp (NovaSeq 6000 v3.8) protocol.
This protocol contains one step: Define Run Format (NovaSeq 6000 v3.8).
Step 1. Define Run Format (NovaSeq 6000 v3.8)
Step input: NTP (normalized libraries)
Step output: None

¹ This automation is for CLPA support only.
² This automation is required for the NovaSeq 6000 v3.8 workflow to function properly. This automation contains additional logic needed for CLPA support. If you would like to remove CLPA support, then contact Illumina Support.
Automations not identified with ¹ or ² are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following table lists field configuration details defined on the Define Run Format (NovaSeq 6000 v3.8) master step.
Define Run Format (NovaSeq 6000 v3.8) Master Step Field Configuration
Field Name
Field Type
Options
Additional Options and Dropdown Items
Comment
Multiline Text
None
Flowcell Type
Text Dropdown
Required Field
Custom Entries
Presets
SP
S1
S2
S4
Instruction
Text
Read Only
Default
Add Flowcell Type and Loading Workflow Type below
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
Global Fields
The following table lists the global custom fields that are configured to display on the Define Run Format (NovaSeq 6000 v3.8) step.
Define Run Format (NovaSeq 6000 v3.8) Global Field Configuration (Derived Sample)
Field Name
Field Type
Options
Additional Options and Dropdown Items
Adjusted Per Sample Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Final Loading Concentration (pM)
Numeric Dropdown
Required Field
Custom Entries
Decimal places displayed = 0
Presets
225
400
Flowcell Type
Text Dropdown
Required Field
Presets
SP
S1
S2
S4
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
[Remove from workflow]
Minimum Molarity (nM)
Numeric
Decimal places displayed = 2
Normalized Molarity (nM)
Numeric
Decimal places displayed = 2
Per Sample Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Warning
Text Dropdown
Read Only
Custom Entries
Presets
The Normalized Molarity (nM) is too low.
n/a
Protocol 2: NovaSeq Standard (NovaSeq 6000 v3.8)
Samples are routed to this protocol when their Loading Workflow Type value is set to NovaSeq Standard. Samples are pooled and added to a library tube in preparation for the NovaSeq run.
At the end of this protocol, a routing script sends the library tube to the AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8) protocol.
This protocol contains two steps:
Step 1: Make Bulk Pool for NovaSeq Standard (NovaSeq 6000 v3.8)
Step 2: Dilute and Denature (NovaSeq 6000 v3.8)
Step 1: Make Bulk Pool for NovaSeq Standard (NovaSeq 6000 v3.8)
In this step, libraries are placed manually into a single pool. Resuspension buffer and reagents are added.
Create only one pool per step.
Step input: NTP (normalized libraries)
Step output: Bulk pool

¹ These automations are for CLPA support only.
Automations not identified with ¹ are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following table lists configuration details defined on the Make Bulk Pool for NovaSeq Standard (NovaSeq 6000 v3.8) step.
Make Bulk Pool for NovaSeq Standard (NovaSeq 6000 v3.8) Master Step Field Configuration
Field Name
Field Type
Options
Additional Options and Dropdown Items
% PhiX (2.5 nM) Spike-In
Numeric
Range = 0–100
Bulk Pool Volume (ul)
ℹ for calculation purposes, not displayed
Numeric
Decimal places displayed = 2
Number of Flowcells to Sequence
Numeric
Required Field
Range = 1–10
Decimal places displayed = 0
Minimum Per Sample Volume (ul)
Numeric
Required Field
Decimal places displayed = 2
Default
5
Number of Samples in Pool
ℹ for calculation purposes, not displayed
Numeric
Decimal places displayed = 0
Default
0
PhiX Volume (ul)
ℹ for calculation purposes, not displayed
Numeric
Decimal places displayed = 2
Total Sample Volume (ul)
ℹ for calculation purposes, not displayed
Numeric
Decimal places displayed = 2
Default
0
Global Fields
The following table lists the global custom fields that are configured to display on the Make Bulk Pool for NovaSeq Standard (NovaSeq 6000 v3.8) step.
Global Custom Fields Configuration (Derived Sample)
Field Name
Field Type
Options
Additional Options and Dropdown Items
Flowcell Type
Text Dropdown
Required Field
Presets
SP
S1
S2
S4
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
[Remove from workflow]
NaOH Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
RSB Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Tris-HCl Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Volume of Pool to Denature (ul)
ℹ Used in Make Bulk Pool for NovaSeq Standard (NovaSeq 6000 v3.8) step only. Displays on Record Details screen and in the generated CSV file.
Numeric
Read Only
Decimal places displayed = 0
Step 2: Dilute and Denature (NovaSeq 6000 v3.8)
In this step, the addition of NaOH, Tris-HCl, and Resuspension Buffer (RSB) denatures and dilutes the pooled samples. Manually place the pooled samples into the library tube for the NovaSeq run.
In addition, this step validates the run setup information and generates the sample sheet file.
Step input: Bulk pool
Step output: Library tube

¹ These automations are required for the NovaSeq 6000 v3.8 workflow to function properly. These automations contain additional logic needed for CLPA support. If you would like to remove CLPA support, then contact Illumina Support.
Automations not identified with ¹ are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following table lists field configuration details defined on the Dilute and Denature (NovaSeq 6000 v3.8) step. These fields are required for sample sheet and JSON file generation.
Dilute and Denature (NovaSeq 6000 v3.8) Master Step Field Configuration
Field Name
Field Type
Options
Additional Options and Dropdown Items
Analysis Software Version
Text
BaseSpace Sequence Hub Configuration
Text Dropdown
Required Field
Presets
Not Used
Run Monitoring Only
Run Monitoring and Storage
Custom Recipe Path
Text
Not applicable
Experiment Name
Text
Required Field
Not applicable
Index Read 1
Numeric Dropdown
Required Field
Custom Entries
Range = 0–20
Decimal places displayed = 0
Presets
0
6
8
Index Read 2
Numeric Dropdown
Required Field
Custom Entries
Range = 0–20
Decimal places displayed = 0
Presets
0
6
8
Output Folder
Text
Required Field
Not applicable
Override Cycles
Text
Not applicable
Paired End
Text Dropdown
Required Field
Presets
True
False
Read 1 Cycle
Numeric Dropdown
Required Field
Custom Entries
Range = 1–251
Decimal places displayed = 0
Presets
251
151
101
51
ℹ Value of 251 is only supported for SP flow cell type. For all other cell types, maximum value is 151.
Read 2 Cycle
Numeric Dropdown
Required Field
Custom Entries
Range = 0–251
Decimal places displayed = 0
Presets
251
151
101
51
ℹ Value of 251 is only supported for SP flow cell type. For all other cell types, maximum value is 151.
Reverse Complement Workflow
Toggle Switch
Required Field
Default
Yes
Run Mode
ℹ Not displayed in user interface
Text Dropdown
Read Only
Presets
SP
S1
S2
S4
Samplesheet Format
Text Dropdown
Required Field
Presets
V1 (default)
V2
Settings Header
ℹ Not displayed in user interface
Text
Read Only
Not applicable
UMI—Read 1 Length
Numeric
Range = 1
UMI—Read 1 Start From Cycle
Numeric
Range = 1
UMI—Read 2 Length
Numeric
Range = 1
UMI—Read 2 Start From Cycle
Numeric
Range = 1
Use Custom Index Read 1 Primer
Toggle Switch
Default
None Set
Use Custom Read 1 Primer
Toggle Switch
Default
None Set
Use Custom Read 2 Primer
Toggle Switch
Default
None Set
Use Custom Recipe
Toggle Switch
Required Field
Default
No
Validation Script
Multiline Text
Required Field
Read Only
Default value is provided in the drop-down section that follows the table.
âš Do not remove this field as it is used by Validate Run Setup and Generate Sample Sheet automation script.
Workflow
Text
Read Only
Default
GenerateFASTQ
Workflow Type
Text Dropdown
Required Field
Presets
No Index
Single Index
Dual Index
Custom
Global Fields
The following table lists the global custom fields that are configured to display on the Dilute and Denature (NovaSeq 6000 v3.8) step.
Global Field Configuration (Derived Sample)
Field Name
Field Type
Options
Additional Options and Dropdown Items
Flowcell Type
Text Dropdown
Required Field
Presets
SP
S1
S2
S4
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
[Remove from workflow]
Protocol 3: NovaSeq Xp (NovaSeq 6000 v3.8)
Samples are routed to this protocol when their Loading Workflow Type value is set to NovaSeq Xp.
Samples are pooled and added to lanes on the NovaSeq flow cell type selected in the Define Run Format (NovaSeq 6000 v3.8) step. At the end of this protocol, the flow cell is sent to the AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8) protocol.
This protocol contains the following three steps:
Step 1: Make Bulk Pool for NovaSeq Xp (NovaSeq 6000 v3.8)
Step 2: Dilute, Denature & ExAmp (NovaSeq 6000 v3.8)
Step 3: Load to Flowcell (NovaSeq 6000 v3.8)
Step 1: Make Bulk Pool for NovaSeq Xp (NovaSeq 6000 v3.8)
Manually place libraries into a pool.
Create only one pool per step.
Step input: NTP (normalized libraries)
Step output: Bulk pool

¹ These automations are for CLPA support only.
Automations not identified with ¹ are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following table lists field configuration details defined on the Make Bulk Pool for NovaSeq Xp (NovaSeq 6000 v3.8) step.
Make Bulk Pool for NovaSeq Xp (NovaSeq 6000 v3.8) Master Step Field Configuration
Field Name
Field Type
Options
Additional Options and Dropdown Items
% PhiX (0.25nM) Spike-in
Numeric
Range = 0–100
Bulk Pool Volume (ul)
ℹ For calculation purposes, not displayed
Numeric
Decimal places displayed = 2
Minimum Per Sample Volume (ul)
Numeric
Required Field
Decimal places displayed = 2
Default
5
Number of Lanes to Sequence
Numeric
Required Field
Decimal places displayed = 0
Number of Samples in Pool
ℹ For calculation purposes, not displayed
Numeric
Decimal places displayed = 0
Default
0
PhiX Volume (ul)
ℹ For calculation purposes, not displayed
Numeric
Decimal places displayed = 2
Total Sample Volume (ul)
ℹ For calculation purposes, not displayed
Numeric
Decimal places displayed = 0
Default
0
Global Fields
The following table lists the global custom fields that are configured to display on the Make Bulk Pool for NovaSeq Xp (NovaSeq 6000 v3.8) step.
Global Field Configuration (Derived Sample)
Field Name
Field Type
Options
Additional Options and Dropdown Items
RSB Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Flowcell Type
Text Dropdown
Required Field
Presets
SP
S1
S2
S4
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
[Remove from workflow]
Step 2: Dilute, Denature & ExAmp (NovaSeq 6000 v3.8)
In this step, the addition of DPX, NaOH, Tris-HCl, and RSB denatures and dilutes the pooled samples. Manually create working pools based on the number of lanes that you want to sequence.
Step input: Bulk pool
Step output: Working pool - variable number, choose how many working pools to create per bulk pool

¹ These automations are for CLPA support only.
² These automations are required for the NovaSeq 6000 v3.8 workflow to function properly. These automations contain additional logic needed for CLPA support. If you would like to remove CLPA support, then contact Illumina Support.
Automations not identified with ¹ or ² are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following table lists field configuration details defined on the Load to Flowcell (NovaSeq 6000 v3.8) step. A script sets these field values. The values are not editable while running the step.
Dilute, Denature & ExAmp (NovaSeq v3.8) Master Step Field Configuration
Field Name
Field Type
Options
Additional Options and Dropdown Items
DPX1 Volume (ul)
Numeric
Read Only
Decimal places displayed = 0
DPX2 Volume (ul)
Numeric
Read Only
Decimal places displayed = 0
DPX3 Volume (ul)
Numeric
Read Only
Decimal places displayed = 0
Global Fields
The following table lists the global custom fields that are configured to display on the Dilute, Denature & ExAmp (NovaSeq 6000 v3.8) step.
Global Field Configuration (Derived Sample)
Field Name
Field Type
Options
Additional Options and Dropdown Items
BP Aliquot Volume (ul)
Numeric
Read Only
Decimal places displayed = 0
Flowcell Type
Text Dropdown
Required Field
Presets
SP
S1
S2
S4
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
[Remove from workflow]
Mastermix per Lane (ul)
Numeric
Read Only
Decimal places displayed = 0
NaOH Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Tris-HCl Volume (ul)
Numeric
Read Only
Decimal places displayed = 2
Step 3: Load to Flowcell (NovaSeq 6000 v3.8)
In this step, scan the flow cell barcode into the Clarity LIMS. Then, manually place the working pools into the lanes of the flow cell for the NovaSeq run. This step validates the run setup information and generates the sample sheet file.
Step input: Working pool
Step output: Flow cell (output containers: SP, S1, and S2 with 2 lanes, and S4 with 4 lanes)

¹ These automations are for CLPA support only.
² These automations are required for the NovaSeq 6000 v3.8 workflow to function properly. These automations contain additional logic needed for CLPA support. If you would like to remove CLPA support, then contact Illumina Support.
Automations not identified with ¹ or ² are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following table lists the field configuration details defined on the Load to Flowcell (NovaSeq 6000 v3.8) step.
Load to Flowcell (NovaSeq 6000 v3.8) Master Step Field Configuration
Field Name
Field Type
Options
Additional Options and Dropdown Items
Analysis Software Version
Text
Not applicable
BaseSpace Sequence Hub Configuration
Text Dropdown
Required Field
Presets
Not Used
Run Monitoring Only
Run Monitoring and Storage
Custom Recipe Path
Text
Not applicable
Experiment Name
Text
Required Field
Index Read 1
Numeric Dropdown
Required Field
Custom Entries
Range = 0–20
Decimal places displayed = 0
Presets
0
6
8
Index Read 2
Numeric Dropdown
Required Field
Custom Entries
Range = 0–20
Decimal places displayed = 0
Presets
0
6
8
Library Tube Barcode
Text
Required Field
Not applicable
Output Folder
Text
Required Field
Not applicable
Override Cycles
Text
Not applicable
Paired End
Text Dropdown
Required Field
Presets
True
False
Read 1 Cycle
Numeric Dropdown
Required Field
Custom Entries
Range = 1–251
Decimal places displayed = 0
Presets
251
151
101
51
ℹ Value of 251 is only supported for SP flow cell type. For all other cell types, maximum value is 151.
Read 2 Cycle
Numeric Dropdown
Required Field
Custom Entries
Range = 0–251
Decimal places displayed = 0
Presets
251
151
101
51
ℹ Value of 251 is only supported for SP flow cell type. For all other cell types, maximum value is 151.
Reverse Complement Workflow
Toggle Switch
Required Field
Default
Yes
Run Mode
ℹ Not displayed in user interface
Text Dropdown
Read Only
Presets
SP
S1
S2
S4
Samplesheet Format
Text Dropdown
Required Field
Presets
V1 (default)
V2
Settings Header
ℹ Not displayed in user interface
Text
Read Only
Not applicable
UMI—Read 1 Length
Numeric
Range = 1
UMI—Read 1 Start From Cycle
Numeric
Range = 1
UMI—Read 2 Length
Numeric
Range = 1
UMI—Read 2 Start From Cycle
Numeric
Range = 1
Use Custom Index Read 1 Primer
Toggle Switch
Default
None Set
Use Custom Read 1 Primer
Toggle Switch
Default
None Set
Use Custom Read 2 Primer
Toggle Switch
Default
None Set
Use Custom Recipe
Toggle Switch
Required Field
Default
No
Validation Script
Multiline Text
Required Field
Read Only
Default value is provided in the drop-down section that follows the table.
âš Do not remove this field as it is used by Validate Run Setup and Generate Sample Sheet automation script.
Workflow
Text
Read Only
Default
GenerateFASTQ
Workflow Type
Text Dropdown
Required Field
Presets
No Index
Single Index
Dual Index
Custom
Global Fields
The following table lists the global custom fields that are configured to display on the Load to Flowcell (NovaSeq 6000 v3.8) step.
Global Field Configuration (Derived Sample)
Field Name
Field Type
Options
Additional Options and Dropdown Items
Flowcell Type
Text Dropdown
Required Field
Presets
SP
S1
S2
S4
Loading Workflow Type
Text Dropdown
Required Field
Presets
NovaSeq Standard
NovaSeq Xp
[Remove from workflow]
Protocol 4: AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8)
This final protocol contains one fully automated step, AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8), described in the following section.
This step is fully automated. Do not add samples to the Ice Bucket or start the step manually. The sequencing service may not update samples correctly when they have been manually started.
Step 1: AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8)
Step input: Library tube from NovaSeq Standard or flow cell from NovaSeq Xp protocol
Step output: Result file/measurement
In this step, pooled samples are sequenced on the NovaSeq instrument and the run metrics are recorded in Clarity LIMS.

¹ These automations are for CLPA support only.
² Not used. By default, the Sequencer API determines this functionality. If necessary, enable the automation and use it to override the next step behavior used by the Sequencer API.
Automations not identified with ¹ are required for the NovaSeq 6000 v3.8 to work function properly.
Master Step Fields
The following fields are configured on the AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8) step in Clarity LIMS:
Current Cycle
Current Read
Firmware Version
Flow Cell Expiration Date
Flow Cell ID
Flow Cell Lot Number
Flow Cell Mode
Flow Cell Part Number
Flow Cell Side
Instrument Control Software Version
Instrument ID
Instrument Type
Lane Counter
Loading Workflow Type
Output Folder
RTA Version
Run Completion Date
Run ID
Run Status
Sequencing Log
Global Fields
The following fields are used to capture the run metrics in Clarity LIMS:
% Aligned R1
% Aligned R2
% Bases >=Q30 R1
% Bases >=Q30 R2
% Error Rate R1
% Error Rate R2
% Phasing R1
% Phasing R2
% Prephasing R1
% Prephasing R2
%PF R1
%PF R2
Cluster Density (K/mm^2) R1
Cluster Density (K/mm^2) R2
Intensity Cycle 1 R1
Intensity Cycle 1 R2
Reads PF (M) R1
Reads PF (M) R2
Yield PF (Gb) R1
Yield PF (Gb) R2
Note the following details:
Values are aggregated across all lanes. Some values (e.g., Yield PF (Gb) R1) are summed while others are averaged.
The names listed previously are the default global custom field names installed with the NovaSeq Integration v3.8 configuration provided in the Illumina Preset Protocols (IPP) v2.6 or later.
All global configuration fields are configured on the Container entity.
All field names are configurable through the Custom Fields screen in the Global Fields tab.
If field names are changed in Clarity LIMS, they must also be changed through the run.metricUdfNames properties file in the application.yml file for the Sequencer API. For more information, refer to the application.yml Properties section in Components Installed. All fields are configured to be visible in the Sample Details table on the Record Details screen for the AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8) step.
All run metrics tracked in Clarity LIMS are overall metrics for the run. There are currently no per-lane metrics provided by NovaSeq Control Software.
Sample Sheet Generation
The sample sheet is generated on the step before the run. This step is Dilute and Denature (NovaSeq 6000 v3.8) in the NovaSeq Standard protocol or Load to Flowcell (NovaSeq 6000 v3.8) in the NovaSeq Xp protocol. This step places samples on the library tube or flow cell that are loaded in the NovaSeq 6000 instrument.
In the default configuration, the Validate Run Setup and Generate Sample Sheet automation generates one CSV format sample sheet file. The bcl2fastq v2.20 downstream analysis uses this file.
The sample sheet is uploaded to the NVCS via the /Illumina/Sequencer/v2/sequencing-run/files endpoint to the Sequencer API. The file endpoint allows for a file to be downloaded from the Clarity LIMS using OAuth (instead of Basic Authentication), which is required for the NovaSeq 6000 instrument.
The run recipe response sets the sample sheet URL to the link to download the file from this endpoint and sets the sampleSheetRequiresOAuth value to true.
NovaSeq 6000 Run
The following steps outline the sequence of events that occurs when a flow cell is loaded onto the NovaSeq 6000 instrument.
Components Installed
The following sections describe the components (files, properties, reagent categories/label groups, reagent kits, and containers) that are installed by default as part of this integration.
Illumina NovaSeq 6000 Integration v3.6.0 is distributed as the BaseSpaceLIMS-sequencer-api RPM package. This RPM package must be installed on the Clarity LIMS server.
The BaseSpaceLIMS-sequencer-api RPM installs the following items:
Sequencer API WAR file
application.yml configuration file
Two configuration scripts:
configure_sequencer_api_proxy.sh
configure_sequencer_api_application.sh
NovaSeq 6000 Integration RPM Components
The following table lists the components installed by the RPM package.
Files Installed
Location
Description
Illumina#Sequencer#v2.war
/opt/gls/clarity/tomcat/current/webapps
War file for Sequencer API application.
configure_sequencer_api_application.sh
/opt/gls/clarity/config/
Script that configures the Sequencer API application through its external application.yml file.
configure_sequencer_api_env.sh
/opt/gls/clarity/config/
Script that configures the Clarity LIMS Tomcat configuration to include Secret Util settings.
configure_sequencer_api_proxy.sh
/opt/gls/clarity/config/
Script that configures the proxy to allow communication with the Sequencer API application.
sequencer-api.conf
/etc/httpd/clarity/
Proxy setting to communicate with the Clarity LIMS.
application.yml Properties
The application.yml file is at opt/gls/clarity/extensions/sequencer-api/.
All properties are configured automatically during installation, but they can also be configured by editing the application.yml file and then restarting Tomcat.
Properties in the file represent all custom field names, both for recipe and run information.
For all custom fields, the names (values in this file) can be changed. However, the property names cannot be changed, removed, or added to. For example, Loading Workflow Type can be changed, but recipe.udfNames.sampleLoadingType cannot.
application.yml Properties Installed
Property
Description
Default Value
spring.profiles.active
Tells the application that it is running deployed in Tomcat.
tomcat
âš Do not change
clarity.url
Base URL that the Sequencer API service uses to contact the Clarity LIMS. The installation script (configure_sequencer_api_application) prompts for this URL.
clarity.username
Username to be used when communicating with Clarity LIMS.
security.signing-key
Private key that is used when signing/validating OAuth tokens. Changing this key invalidates any issued tokens.
security.token-expiry
Specifies (in hours) the expiry period for login tokens issued by the Sequencer API.
88
novaseq.sequenceStepNames
List of NovaSeq sequencing run step names for which the integration can find samples queued.
Names must be an exact match to the name of the step in Clarity LIMS (not the master step/process type).
Each line must be indented to the same point and start with a dash (-).
- "AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8)"
- "AUTOMATED - NovaSeqDx Run (NovaSeqDx v1.1)"
novaseq.flowcells
List of supported NovaSeq flow cell types.
Type names exactly match the values used by the NVCS run status requests.
To add more types, provide both type and lanes properties, indented to the same point and starting with a dash (-).
- type: "SP" lanes: 2
- type: "S1" lanes: 2
- type: "S2" lanes: 2
- type: "S4" lanes: 4
novaseq.reagents
List of supported reagent kits to be tracked on sequencing steps.
lotName — The name of the lot as it appears in the run started request.
kitName — The name of the corresponding reagent kit in Clarity LIMS that the lot is tracked as.
To add more types, provide both type and lanes properties, indented to the same point and starting with a dash (-).
ℹ The name can differ in the NVCS request versus the Clarity LIMS configuration.
- lotName: "Buffer" kitName: "Buffer Cartridge"
- lotName: "Cluster" kitName: "Cluster Cartridge"
- lotName: "SBS" kitName: "SBS Cartridge"
recipe.udfNames
Configures the names of the fields used in the run recipe. For more information, refer to the Run Recipe Contents section of NovaSeq 6000 Run.
Each value must be enclosed in quotes (e.g., recipe.udfNames.runMode "Run Mode").
Value provided for sampleLoadingType must match the value provided in the run configuration (e.g., recipe.udfNames.sampleLoadingType "Loading Workflow Type").
recipe.sampleSheet.outputName recipe.sampleSheet.notAvailableValue
Configures the name of the sample sheet file placeholder on the step where run recipe information is populated, and the property value to use when the file is not found.
run.stepUdfNames
Configures the master step field names to be used when recording run results. For more information, refer to the Master Step Fields section of Step 1: AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.7) in Protocol 4: AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8).
Each value must be enclosed in quotes (e.g., run.stepUdfNames.runID "Run ID")
Value provided for sampleLoadingType must match the value provided in the run configuration (e.g., run.stepUdfNames.sampleLoadingType "Loading Workflow Type"). It is expected that the run step field and the field on the input derived sample share a name.
run.metricUdfNames
Configures the result file custom fields/measurement global field names to be used when recording run results. These fields capture the run data. For more information, refer to the Global Fields section of Step 1: AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.7) in Protocol 4: AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8).
run.autoCompleteOnlyAtSuccess
Determines which of the following options that the sequencing run step must be:
Autocompleted when the run status is RunCompletedSuccessfully (if autoCompleteOnlyAtSuccess is true)
Autocompleted regardless of the run status (if autoCompleteOnlyAtSuccess is false). For more information, refer to Configuring autoComplete Properties.
true
Reagent Categories/Label Groups
TruSeq HT Adapters v2 (D7-D5)
Reagent Kits
Buffer Cartridge
Cluster Cartridge
DPX1
DPX2
DPX3
NaOH
Resuspension Buffer (RSB)
SBS Cartridge
Tris HCl
Container Types
Library Tube
SP
S1
S2
S4
This integration supports the following items:
Library tube with barcode provided in the format [A-Z]{2}[0-9]{7}-[A-Z]{3} (eg, AB1234567-XYZ)
SP, S1, S2, or S4 flow cell with barcode provided in one of the following formats:
SP and S1 flow cell: [A-Z0-9]{5}DR[A-Z0-9]{2}
S2 flow cell: [A-Z0-9]{5}DM[A-Z0-9]{2}
S4 flow cell: [A-Z0-9]{5}DS[A-Z0-9]{2}
Example: H1991DMXX
NVCS Configuration
For details on configuring NVCS for integration with Clarity LIMS, contact the Clarity LIMS Support team.
Routing Script Requirements
The requirements for the routing script functionality are as follows.
On the steps that use the routing script (Define Run Format (NovaSeq 6000 v3.8) and Dilute and Denature (NovaSeq 6000 v3.8)), the Next Step for all samples must be set to Remove from workflow. A script sets this value. The value must not change in the Assign Next Steps screen.
In the Next Steps section of the protocol configuration screen, the method of assigning the next step must be set to Automation for the last step of the protocol.

Configuring autoComplete Properties
The application.yml configuration file contains the following properties:
run.autoComplete
run.autoCompleteOnlyAtSuccess
These properties determine the conditions under which the last step of the NovaSeq 6000 workflow (AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8)) is automatically completed when the run status is "RunCompletedSuccessfully" (default behavior) or regardless of the run status.
By default, both properties are set to true and the step only completes when the run is successful. If the run fails or is aborted, manually complete the step in Clarity LIMS.
For the step to autoComplete regardless of the result of the sequencing run, change the autoCompleteOnlyAtSuccess property value to false.
Enabling/Disabling autoComplete Properties
Open the application.yml file at /opt/gls/clarity/extensions/sequencer-api/application.yml:
Edit the value of autoCompleteOnlyAtSuccess property as required.
Save the file.
The following table shows how the combined value of run.autoComplete and run.autoCompleteOnlyAtSuccess properties affects the autoComplete behavior of the sequencing step.
run.autoComplete and run.autoCompleteOnlyAtSuccess Value Matrix
run.autoComplete Property Value
run.autoCompleteOnlyAtSuccess Property Value
Outcome
true
true
Step automatically completes only if sequencing run is successful.
If run is not successful, step does not automatically complete, and the run details are recorded in Clarity LIMS.
true
false
Step automatically completes, regardless of the run status.
false
true
Step does not automatically complete.
Run details are recorded in Clarity LIMS.
false
false
Step does not automatically complete.
Run details are recorded in Clarity LIMS.
Rules and Constraints
The workflow configuration contains several validation checks. To make sure that the calculations work properly, it is important that you do not disable any of this validation logic. The validation checks determine the following information:
Which samples, and how many, can enter each step together.
Which samples, and how many, can be pooled together.
The library tube ID must be unique. There must not be multiple library tube containers in the system with the same name.
Reagent labels (indexes) must be unique.
Only controls are permitted as unindexed samples; all other unindexed samples and pools are not permitted.
For sample sheet generation constraints, refer to the Bcl2fastq2 Sample Sheet Generation section in Illumina Instrument Sample Sheets (NGS v5.17 & later).
Do not manually start the AUTOMATED - NovaSeq Run (NovaSeq 6000 v3.8) step. This step is a fully automated and the sequencing service may not update samples correctly if they have been manually started.
For the automated run to start successfully, Validate Run Setup and Generate Sample Sheet must be selected.
Last updated
Was this helpful?
